文章摘要
王 玥,王江荣.煤炭发热量的二次回归方程预测分析[J].水泥工程,2018,31(6):17-19
煤炭发热量的二次回归方程预测分析
Prediction and Analysis of Quadratic Regression Equation of Coal Calorific Value
  
DOI:
中文关键词: 煤炭发热量  二次回归  线性回归  神经网络  预测
英文关键词: calorific value of coal  two regression  linear regression  neural network  prediction
基金项目:
作者单位
王 玥 兰州石化职业技术学院 
王江荣 兰州石化职业技术学院 
摘要点击次数: 1200
全文下载次数: 0
中文摘要:
      以灰分、全水分为煤样指标建模了煤炭发热量的非线性二次回归预测模型,通过测试及对比,该模型具有较高的预测精度,预测结果能够满足工程需要,预测效果优于线性回归模型及神经网络模型等。另外,该预测模型还具有容易程序实现、操作简便等特点
英文摘要:
      The non-linear quadratic regression prediction model of coal calorific value was modeled with ash content and total moisture as the coal sample index. Through testing and comparison, the model has higher prediction accuracy, and the prediction results can meet engineering needs, and the prediction effect is better than linearity regression model and neural network model. In addition, the prediction model has the characteristics of easy program implementation and easy operation.
查看全文   查看/发表评论  下载PDF阅读器
关闭